Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

نویسندگان

  • Piyum A Khatibi
  • Dwayne R Roach
  • David M Donovan
  • Stephen R Hughes
  • Kenneth M Bischoff
چکیده

Background: One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which incur additional economic losses via expensive antibiotic treatments and disinfection costs. The current use of antibiotic treatments has led to the emergence of drug-resistant bacterial strains, and antibiotic residues in distillers dried grains with solubles (DDGS) are a concern for the feed and food industries. This underscores the need for new, non-antibiotic, eco-friendly mitigation strategies for bacterial contamination. The specific objectives of this work were to (1) express genes encoding bacteriophage lytic enzymes (endolysins) in Saccharomyces cerevisiae, (2) assess the lytic activity of the yeast-expressed enzymes against different species of Lactobacillus that commonly contaminate fuel ethanol fermentations, and (3) test the ability of yeast expressing lytic enzymes to reduce Lactobacillus fermentum during fermentation. Implementing antibiotic-free strategies to reduce fermentation contaminants will enable more cost-effective fuel ethanol production and will impact both producers and consumers in the farm-to-fork continuum. Results: Two genes encoding the lytic enzymes LysA and LysA2 were individually expressed in S. cerevisiae on multi-copy plasmids under the control of a galactose-inducible promoter. The enzymes purified from yeast were lytic against Lactobacillus isolates collected from fermentors at a commercial dry grind ethanol facility including Lactobacillus fermentum, Lactobacillus brevis, and Lactobacillus mucosae. Reductions of L. fermentum in experimentally infected fermentations with yeast expressing LysA or LysA2 ranged from 0.5 log10 colony-forming units per mL (CFU/mL) to 1.8 log10 (CFU/mL) over 72 h and fermentations treated with transformed yeast lysate showed reductions that ranged from 0.9 log10 (CFU/mL) to 3.3 log10 (CFU/mL). Likewise, lactic acid and acetic acid levels were reduced in all experimentally infected fermentations containing transformed yeast (harboring endolysin expressing plasmids) relative to the corresponding fermentations with untransformed yeast. Conclusions: This study demonstrates the feasibility of using yeast expressing bacteriophage endolysins to reduce L. fermentum contamination during fuel ethanol fermentations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations

BACKGROUND Reduced yields of ethanol due to bacterial contamination in fermentation cultures weaken the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predominant. Bacteriophage lytic enzymes are peptidoglycan hydrolases that can degrade the Gram positive ce...

متن کامل

Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production

BACKGROUND The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such partic...

متن کامل

Chemical Inhibition of the Contaminant Lactobacillus fermentum from Distilleries Producing Fuel Bioethanol

The purpose of this study was to determine the Minimum Inhibitory Concentration (MIC) of pure or mixed chemicals for Saccharomyces cerevisiae and Lactobacillus fermentum in the samples isolated from distilleries with serious bacterial contamination problems. The biocides, which showed the best results were: 3,4,4’ trichlorocarbanilide (TCC), tested at pH 4.0 (MIC = 3.12 mg/l), TCC with benzetho...

متن کامل

Improvement of L-Arabinose Fermentation by Modifying the Metabolic Pathway and Transport in Saccharomyces cerevisiae

The L-arabinose utilization pathway was established in Saccharomyces cerevisiae, by expressing the codon-optimized araA, araB, and araD genes of Lactobacillus plantarum. After overexpressing the TAL1, TKL1, RPE1, RKI1, and GAL2 genes and adaptive evolution, the L-arabinose utilization of the recombinant strain became efficient. The resulting strain displayed a maximum specific growth rate of 0....

متن کامل

Rapid detection of lactobacillus and yeast concentrations using a particle size distribution analyser.

AIMS To see the possibility of particle size distribution analyser (PSDA) in detecting concentration of lactobacillus contaminants in yeast fermentation. METHODS AND RESULTS A PSDA was used to rapidly determine the size and concentration of lactobacillus and Saccharomyces cerevisiae. Data showed that the aerodynamic diameters of Lactobacillus casei and S. cerevisiae cells were around 0.63 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014